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Abstract: The exact effective valence shell Hamiltonian (Ti") which operates within a predetermined valence shell producing 
exact valence state energies and which can, in principle, be evaluated to arbitrary accuracy by purely systematic ab initio meth­
ods is analyzed. Specific application is made to the outer ns-np valence shell of C, N, O, F, Si, P, and S in order to determine 
the exact one-center integrals of W for comparison with recent ab initio calculations and with semiempirical theories which 
attempt to mimic 7/v. The linearly independent matrix elements of the one-, two-, and three-electron effective interactions of 
Tiv are obtained and it is shown that three-electron effective interactions are important. Some of these matrix elements are 
uniquely determined by atomic spectroscopic data. An optimal set of the remaining matrix elements is generated by a least-
squares fit. The relationship between the empirical one-center Jiy matrix elements and the one-center, one- and two-electron 
parameters of semiempirical methods is given elsewhere. 

I. Introduction 

The concept of orbitals is central to the understanding of the 
electronic structure of atoms and molecules. Rigorously, 
one-electron orbitals are no more than convenient mathe­
matical constructs for representing the fully correlated all-
electron eigenstates of the electronic Hamiltonian. However, 
from a more naive standpoint, the orbitals for a given system 
are often taken to possess a physical significance of their own 
when used within the context of simple models of bonding. In 
many cases, ideas based on a simple molecular orbital picture 
can clearly describe certain chemical phenomena. The orbitals 
naturally fall into three groups—core, valence, and excited. 
Within a zeroth-order model of electronic structure, the frozen 
core orbitals are fully occupied in all the valence states, those 
states which are important for describing ordinary chemistry; 
the excited orbitals are vacant; the valence orbitals, being only 
partially occupied and the major variable of the model, largely 
control the processes of ordinary chemistry. This simple picture 
of valence theory is used to explain large blocks of phenome­
nology like the periodicity of the chemical properties of the 
elements and general trends in bonding. 

A. Semiempirical Theories of Valence. The phenomenolo-
gical importance of valence electrons coupled with the un-
wieldiness and expense of accurate ab initio calculations is the 
basic motivation behind the development of semiempirical 
valence theories.2" Beginning with Hiickel theory,2b then with 
Pariser-Parr-Pople theory,233 semiempirical theories have 
evolved through myriad variations on the theme.4 The con­
ceptual impetus of these theories is the postulate that there 
exists a model Hamiltonian, 7/VM, which operates only on a 
prechosen set of valence electrons which are moving in the field 
of the frozen core.4 It is assumed that 7/VM has the general 
form 

WM = Ec+t WM0) + V2! E £ ' ^MUJ) (D 
/ = I i=\ j=\ 

where Ec is the energy of the correlated frozen core, A'v is the 
number of valence electrons, and 7 / V M ( 0 and WM OJ) are 
effective one- and two-body operators respectively. The primed 
summation indicates that / •= j is not allowed. By adjusting the 
matrix elements of WM O) and 7/v

M (i,j) within the chosen 
set of valence orbitals, it is hoped that the effects of correlation 
can be incorporated, so that the spectrum of WM matches the 
portion of the spectrum of the full Hamiltonian, H, which 
corresponds to the valence states of interest. The determination 

of these matrix elements, or parameters, is accomplished with 
the aid of experimental data and often with ad hoc assumptions 
based on "chemical intuition". The specific details of the de­
termination of the semiempirical parameters characterize each 
of the different theories. One of the basic assumptions con­
cerning semiempirical parameters is that they are functions 
of local environment and, therefore, are transferable among 
similar systems. One variation, due to Raynor and Hashmall,5 

takes the parameters as functions of the occupation numbers 
of the orbitals. 

The development of semiempirical theories of valence has 
been marred, in part, by the lack of systematic guiding prin­
ciples. Given the assumed general form in (1), each investigator 
introduces his own brand of chemical intuition along with his 
personal parameterization scheme. This lack of a theoretical 
foundation and the morass of different semiempirical methods 
has led some to conclude that these semiempirical approaches 
are nothing but interpolation methods which proceed in the 
absence of any systematic knowledge of what the parameter­
ization is or should be doing. In view of the unavailability of 
rigorous theoretical guides and the utility of semiempirical 
methods, others have attempted to optimize the semiempirical 
methods within the uncertain confines of a given parameteri­
zation scheme. 

The present paper is part of our continuing efforts to provide 
a fully rigorous, systematic ab initio theoretical basis for the 
derivation and calculation of the properties of the true effective 
valence shell Hamiltonian4-6 ' ' which is being mimicked by 
semiempirical model Hamiltonians. The ultimate goal is to 
provide a solid theoretical connection between improved 
semiempirical theories of electronic structure and first prin­
ciples, ab initio theories. 

B. Effective Hamiltonian Theories. In an effort to under­
stand the many remarkable successes and occasional disap­
pointing failures of semiempirical theories,12'13 we have been 
studying the theory,6 8 properties, and ab initio calculation9 ' ' 
of the effective valence shell Hamiltonian, W, for atomic and 
molecular systems. 5¥v is an operator which is derived (as op­
posed to postulated in semiempirical theories) from the full 
electronic Schrodinger equation, yet it depends explicitly only 
upon valence orbitals. Since W is exact, the spectrum of W 
is identical with the portion of the spectrum of H which is as­
sociated with the valence states of the atomic or molecular 
system. 

The subspace of the N-electron Hilbert space, within which 
JH'' is defined, is called the valence space (or P space). Given 
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a complete, orthonormal set of one-electron orbitals, {<£), which 
are partitioned into core \<t>c\, valence \<t>v\, and excited sets 

10} = |0c} + l«v) + I0cl (2) 

the valence space is spanned by the set of all Slater determi­
nants in which the core orbitals are doubly occupied by the NQ 

core electrons and the remaining /Vv = N — N0 valence elec­
trons are distributed among the valence orbitals in all distinct 
ways. The excited orbitals are vacant in all valence space 
configurations. The complement to the valence space (or Q 
space) is defined by all other iV-electron Slater determinants 
which are characterized by having at least one vacant core 
orbital (hole) and/or at least one occupied excited orbital 
(particle). 

C. Derivation of ft". Proof of the existence of W follows 
directly from partitioning theory by first writing the Schro-
dinger equation in matrix notation: 

HC = EC (3a) 

where C is the column matrix of coefficients in the wave 
function expansion in terms of the above noted complete set 
of Slater determinants. Equation 3a is rewritten in block form 
as 

(Z JMHcj <»> 
where Hppis thesubblockof the full Hamiltonian in P space, 
H P Q = H+Qp contains the coupling between P and Q space, Cp 
is a vector in P space of P-space configuration coefficients, etc. 
Equation 3b can be separated into two equations: 

H P P C P + H P 0 C Q = £ C P (4a) 

HQPCR + H Q 0 C Q = £ C Q (4b) 

Formally solving (4b) for C Q = ( £ I Q Q — H Q Q ) ~ ' H Q P C P , and 
substituting the result into (4a) gives the well-known rela­
tion14 

iHpp + H P Q ( £ I Q Q - H0Q)-1H0P)Cp = £ C P (5) 

where I 0 0 is the identity matrix in Q space. The inverse matrix 
(EIQQ — H Q 0 ) - 1 is defined solely within Q space and is, in 
principle, infinite. Since the bracketed term in (5) is a matrix 
defined only on the valence space with eigenvalues E which are 
a subset of the eigenvalues of the original Schrodinger equation 
(3), we draw the obvious conclusion that the bracketed term 
is one representation6^8'15"19 of the effective valence shell 
Hamiltonian matrix. 

W = H P P + H P 0 ( E I 0 0 - H 0 Q ) - 1 H 0 P (6) 

The conclusion is obvious since there is a one-to-one corre­
spondence between the configurations appearing in the full 
treatment of the semiempirica], model Schrodinger equation, 
•7^VMCP = ECp, and those appearing in the exact effective 
valence shell Schrodinger equation (5). 

D. Properties of W. Having demonstrated the existence 
of ^/v , which is the object being modeled in semiempirical 
theories by Wvvi, we turn to examine the structure of the in­
dividual matrix elements of W. From the form of eq 6, it can 
be shown that 7iv has nonzero matrix elements between va­
lence space determinants which differ by more than two 
electrons. This is a direct consequence of treating the degrees 
of freedom associated with CQ in (4b) implicitly through 
H P 0 ( £ I Q Q — H 0 0 ) - ' H Q P rather than explicitly as in eq 3. In 
other words, it is generally true that in operator language H"1 

consists not only of one- and two-electron operators, as pos­
tulated by semiempirical f(vw's (see eq 1), but also three-, 

four-,. . . , up to 7Vv-electron effective valence shell opera­
tors. 

W = Ec+t #vi(0 + V2! t t'^ndj) 

+ V3! E t' t'WmUJ.k) + ... (7) 
; = U = i A = I 

The presence of these nonclassical many-electron effective 
operators, y / v m , . . . , is the price that must be paid in order 
to have a valence shell Hamiltonian that is exact! 

Since all valence space configurations have a fully occupied 
core and a vacant excited space, the effects of core-core, 
core-valence, core-excited, valence-excited, and excited-
excited correlation must be included in the effective operators, 
E^,W\,W\i,. . . ,W \2., .,vv. The valence-valence correlation 
is incorporated by diagonalizing W within the valence space. 
This is analogous to a full valence configuration interaction 
calculation. 

Based on the diagrammatic quasi-degenerate many-body 
perturbation formulation of Brandow,16 and the second 
quantized, generalized perturbation theory of Freed20 as ap­
plied to effective valence shell Hamiltonian theory by Iwata 
and Freed,7 we have recently shown how very general ab initio 
perturbative formulas may be derived for the individual valence 
integrals of the operators, W\,. . . , %v\2. . .Av8 AS the deri­
vations employ a Rayleigh-Schrodinger-type formulation, the 
state energies, E, in (6) are likewise expanded in a perturbation 
series, so the resultant expressions for the matrix elements of 
Ji*-' are energy independent. Discussions of the pros and cons 
of various formalisms can be found elsewhere.4^-11 The ap­
proximate evaluation of these formulas can also be related 
through the partitioning formalism to the B^ method of Ger-
shgorn and Shavitt21 and the configuration selection method 
of Segal and Wetmore.22 The latter methods are now standard 
approximate ab inito configuration approaches. The valence 
integrals of the effective valence shell Hamiltonian within this 
formalism are shown to satisfy the following criteria: 

(1) The integrals of W are independent of the valence state 
energy. 

(2) The integrals of 7/v are independent of the number of 
valence electrons in the system; they depend, in part, upon the 
choice of valence orbitals. 

(3) The integrals can be evaluated independently, thus al­
lowing the separation of the matrix elements of 5¥v into indi­
vidual O, 1, 2 , . . . , A'v-electron contributions, which take the 
form of integrals of !H"\, . . . , ^ /v i2 . . ..\\ between particular 
valence shell spin orbitals. 

(4) A very general form of perturbation theory, involving 
matrix energy denominators which incorporate a valence or­
bital dependence, may be used without destroying criteria 
(D-O). 

Criteria (l)-(3) are important to facilitate comparison with 
semiempirical theories whereas criterion (4) is important to 
ensure convergence of the ab initio formulas in certain path­
ological cases, for example, when large core polarization effects 
are important as in the 7r Hamiltonian of ethylene,9 or when 
so called "intruder" states or low-lying Rydberg states are 
present (see discussion in section III). 

E. Fundamental Questions Concerning the Structure of ft\ 
Of particular interest to us are the integrals of the individual 
effective operations, 7/vi, Wvi2, . • • , ff"12. ..v,- Because of 
their close relationship to the parameters of semiempirical 
theories, we refer to them as true parameters. The answers to 
several questions concerning the true parameters are important 
both for understanding and developing a solid theoretical basis 
for improved semiempirical theories and for checking ap­
proximation schemes for evaluating 7/v. This is necessary in 
order to develop the effective valence shell Hamiltonian into 
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an accurate ab initio method which can add to our under­
standing of electronic structure. Some of the questions to be 
answered are as follows; 

(a) How large are contributions from "nonclassical" three-, 
four-,. . . , and higher-electron true parameters, especially since 
they are absent in semiempirical theories? 

(b) How do the true parameters depend upon the particular 
choice of valence orbitals? 

(c) What information can be obtained from experimental 
data concerning the true parameters, and how can it be used 
as an aid in understanding both semiempirical and ab initio 
theories? 

(d) How are the effects of three- and higher-electron true 
parameters averaged into one- and two-electron semiempirical 
parameters? And is this averaging done in a consistent 
manner? 

(e) How good are the major assumptions of semiempirical 
theories such as neglect of differential overlap (NDO) and the 
hypothesis of transferability? Some of the more evolved 
semiempirical theories, like MINDO and MNDO, rely less 
on the N DO approximation than do the earlier ones. 

Partial answers to questions (a) and (b) have been obtained 
through second-order calculations of W for first- and second-
Gong) row a toms. 1 0 " It is shown in these papers that three-
electron true parameters can make contributions of the order 
of several electronvolts to excitation energies and ionization 
potentials. Questions (d) and (c) have also been partially in­
vestigated.23-24 

In the following sections, question (c) is studied in detail and 
is used to analyze (a) and (b) from an empirical point of view. 
Implications for ab initio calculations are also discussed. 
Further investigation of questions (d) and (e) is left for future 
papers. 

Section 11 briefly introduces the notation for the relation­
ships between the true parameters, while in section III em­
pirical values for the true one-center parameters are deduced 
from atomic spectral data. Section IV provides a discussion 
of the results. Ab initio calculations of 5¥v matrix elements and 
the comparison between the empirical and ab initio W matrix 
elements and one-center semiempirical integrals are discussed 
elsewhere.10J1 

II. True Parameters 

The definitions of the true parameters are obtained as spatial 
integrals of the effective one-, two-, three-, . . . , AVelectron 
operators between valence orbitals. 

<r|r'> = J"dr0,*(r) H\(r) 4>L,(r) 

<rH<|r'w') = j j 'dr , dr2</>*r(ri) 0 M r 2 ) 

X '//v,2(r,,r2)0[-'(ri)0w<(r2) 

(uvw\u'c'w') = Xl'dr, dr2dr3</>*u(ri)(/>*r(r2)0*w(r3) 

X '//vi2.i (ri,r2,r3)[0„'(r,)0,.<r2)0M,'(r3) 

-*K.'(r,)0,. '(r2)0„-(r3)] (8) 

Spin integrations can easily be appended to the one- and two-
electron true parameters; however, for the three-electron true 
parameters, spin cannot be included in such a trivial way. 

Since electrons can have only two different values of spin 
((V or 8), and since the Pauli principle leads to exchange con­
tributions when two electrons have the same spin, any physi­
cally meaningful quantity that requires three-electron integrals 
must require them at least in pairs; i.e., three-electron integrals 
can never appear independently because at least two out of 
three electrons must have the same spin, thus generating ex­
change contributions. Therefore, the three-electron true pa­
rameters, which are matrix elements of the three-body inter­
actions in 7/v, are defined as linear combinations of two 
three-electron spin-independent integrals as in (8). This in­

troduces no problems since all matrix elements of 7/vi23 can 
be expressed in terms of the three-electron true parameters; 
for example, a little algebra generates 

0 w ( l )«( l )0 r (2)«(2)0 K , (3)a(3) 

X 

X0, / ( l )«( l )0 1 , (2)«(2)0 v v <(3)a(3) = {uvw\u'u'w>) 

— (uvw\v'u'w') — {uvw\u'w'v') (9) 

where | 0 M ( 1 ) < T W ( 1 ) . . . <$>u'(Ny)au-{Nv)) represents a nor­
malized Slater determinant of valence orbitals. Since W does 
not affect core orbitals, and since ail valence space basis states 
have a full core, the core may implicitly be assumed to be 
present. 

In a similar manner, the four-electron true parameters are 
defined as linear combinations of four four-electron spin in­
dependent integrals. 

III. Empirical Analysis for Atoms 

As an example of the kinds of information which can be 
obtained from experimental data concerning the true param­
eters, we consider the empirical analysis of 7/v for first- and 
second-row atoms. In these systems we choose to label the outer 
shell s, pv, pj., and p- orbitals as valence in accord with simple 
pictures of valence. (In the second row, the 3d orbitals could 
be appended to the valence shell if desired.) 

The spatial symmetry of the valence orbitals, the Hermitian 
property of 7/v, and the indistinguishability of electrons are 
used to generate the list of spin-free, nonzero, independent, 
zero-, one-, two-, and three-electron true parameters appearing 
in Table I. An important symmetry difference between the true 
parameters and the ordinary two-electron repulsion integrals 
is the fact that (vw\wc) and (n>|wvt') are not necessarily equal 
even if j0vj were chosen to be real. For example, (s.r|x?) and 
{5.91JC.V) are listed as distinct true parameters in Table I. 
Again, this result is a direct consequence of the explicit for­
mulas for the exact 7/v. 

To obtain empirical relations between the true parameters, 
the 17 valence state energies for Nv = O, 1, 2, and 3, expressed 
in terms of the zero-, one-, two-, and three-electron true pa­
rameters, are set equal to their experimental values. Three 
additional empirical relations are obtained by using the fact 
that valence states with the same total orbital angular mo­
mentum (and number of electrons) but difffcrent projections 
along a specified axis must have the same energy. As a result, 
we are able to establish 20 empirical relations among the 22 
true parameters. (See Appendix I for the equations.) 

The empirical energies25 27 are obtained by performing a 
degeneracy weighted average (2J + 1) over the multiplet 
splittings for each term.27 Corrections are made to compensate 
for the fact that the value of the Rydberg constant is different 
for each atom. No attempt is made to correct for the small 
relativistic effects. Their main contribution is to the core en­
ergy, £ c . 

Starting with the zero valence electron 1S state (eq 1.1) and 
working up, it is found that 1 2 of the 22 true parameters can 
be uniquely determined empirically. These true parameters 
are marked with footnote a, Table I. The remaining ten true 
parameters are related by eight empirical equations, thereby 
allowing the elimination of all but two true parameters; <.w|.«) 
and (.WA'|.«X) are chosen as our two independent variables for 
convenience. 

The fact that 12 of the true parameters have unique em­
pirical values implies that for any ab initio theory in which the 
true parameters can be separately evaluated and satisfy criteria 
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Table I. True Parameters of W (eV) 

C N O F Si P S * 

E 
(s 
(x 

(ss 
(sx 
(.SX 
(ss 

(xx 
(xy 
(xy 
(xx 
(ssx 
(sxx 
(sxx 
(sxy 
(sxy 
(sxy 
(xyz 
(xyz 
(xyy 
(xyy 
(xyy 

a 

s)" 
x)a 

ss) 
sx)a 

XS ) " 

xx) 
xx) 
xy)a 

yx)" 
yy) 
ssx) 
sxx) 
syy) 
sxy)a 

syx >a 

xsy)a 

xyz)" 
xzy)" 
XSS ) 

xyy) 
xzz) 

-882.12 
-64.50 
-56.49 

17.47 
18.20 
3.10 
2.48 

19.93 
18.17 
0.52 
1.23 

-1 .90 
-2 .33 
-0 .34 
-1 .87 
-0 .12 

0.06 
-2 ,97 
-0.17 
-1 .54 
-3 .28 
-0.14 

-1219.15 
-97.89 
-87.90 

21.04 
22.69 

3.93 
2.43 

25.56 
23.02 

0.82 
1.72 

-1 .55 
-2 .37 
-0 .48 
-1 .95 

0.06 
-0 .27 
-2 .85 
-0.15 
-1 .53 
-3 .05 
-0 .05 

-1610.77 
-138.12 
-126.13 

24.61 
27.16 

4.72 
2.16 

31.15 
27.86 

1.10 
2.19 

-1 .19 
-2 .53 
-0 .64 
-1.97 

0.08 
-0.21 
-2 .87 
-0 .12 
-1.14 
-3.11 
-0 .12 

-2057.11 
-185.19 
-171.19 

28.24 
31.63 

5.56 
1.73 

36.72 
32.66 

1.41 
2.65 

-0 .87 
-2 .64 
-0 .80 
-1 .90 

0.06 
-0 .23 
-2 .79 
-0 .13 
-0 .95 
-3 .09 
-0 .17 

-7784.83 
-45.14 
-36.27 

11.97 
11.20 

1.85 
1.42 

10.23 
9.53 

-0 .48 
1.18 

-0 .40 
-0 .33 
-0 .30 
-0 .43 

0.40 
-0 .16 

1.01 
0.99 
0.69 
1.10 

-0 .90 

-9128.32 
-65.03 
-53.97 

14.28 
13.36 
2.28 
2.20 

13.11 
12.10 
0.05 
0.97 

-0 .97 
-0 .82 

0.07 
-0 .87 
-0 .02 
-0 .13 
-2 .13 
-0 .56 
-0 .60 
-2.37 

0.32 

- 1 0 582.04 
-88.05 
-74.82 

15.19 
2.71 

13.34 
-0.41 

0.21 
0.51 

-0 .14 

" Uniquely determined true parameters. * Empirical energies for A\, = 2 and 3 are not all available, specifically 'S(3p2) and 2D°(3p3). 

(1) and (2) of section I, these 12 true parameters should be 
independent of the mathematical form chosen for the valence 
orbitals provided that the ab initio calculations of Ji" have 
included all the contributing terms. Thus a good test of con­
vergence for the ab initio theory involves a comparison ofthe 
ab initio and empirical values of these unique true parameters. 
The comparison can be used in two different ways. (1) Since 
the true parameters are independent of the valence space in an 
exact calculation, the numerical approximations ofthe par­
ticular calculational scheme, such as using a finite basis and 
truncating the perturbation expansion, can be tested by com­
paring the parameters from several different choices of valence 
orbitals. (2) A scheme for choosing a good set of valence or­
bitals can be determined by testing convergence as a function 
of valence orbitals. These two tests have already been used in 
our recent ab initio calculations of W for first- and second-row 
atoms through second order in perturbation theory.10'" 
Third-order calculations are in progress.28 

From an ab initio point of view, the remaining ten nonunique 
true parameters must be functions of the mathematical form 
chosen for the valence orbitals. The functions themselves are 
arbitrary and are, of course, unknown empirically. By using 
the Hermitian property of 7/v, which requires all energies to 
be real, it is possible to obtain upper and lower bounds for the 
two free variables, (.w|.w) and (.wx|.«x). 

E[1S(S2)] < (ss\ss) + 2(s\s) + Ec< £[>S(p2)] (10a) 

£ [ 2 P ° ( s 2 p ) ] < (55X|5«> + (.95 I 55) 

+ 2(sx|sx) — (sx\xs) 
+ 2<.?|.v> + (x|x) + E0 < £[2P°(p3)] (10b) 

(Equations 10 are easily derived from Appendix I.) The al­
lowed region for <ss|s,?) and (.MX|.MX) is pictured in Figure 
1. 

So far in the analysis we have neglected the existence of four-
and higher-electron true parameters which we, and certainly 
all semiempirical chemists, would like to believe is a reasonable 
approximation. However, by pursuing the analysis further it 
is possible to get an estimate ofthe cumulative magnitude of 
these effective many-electron effects in the best cases. To do 
this, the valence state energies for Nv = 4, 5, 6, and 7 are ex­
pressed in terms ofthe zero-, one-, two-, and three-electron true 
parameters (see Appendix II). Using the two-dimensional 

b--

3 
(A 
JS 
X 
W 
3 

•+• 
C <SSlSS> ° 

Figure 1. Allowed region for true parameters is interior to the parallelo­
gram where a = £[2P°(p3)] - ( M | W ) - 2(sx\sx) + (sx\xs) - 2(s\s) 
- (x\x) - Ec,b = £[2P°(s2p)] - (ss\ss) - 2(sx\sx) + (sx\xs) -
2(s\s) - (x\x) -Ec, c = E[1S(S2)]-2(.v|,?> - Ec. and d = E[1S(P2)] 
-2(s\s) -E0. 

freedom of the nonunique true parameters, we are able to 
minimize the contributions of the omitted four- and higher-
electron effects in a nonlinear least-squares sense. Specifically, 
we minimize the function/((ss\ss), (ssx\ssx)) given by 

/ ( ( . M | . M ) , ( 5 ix | i . vx ) ) 

= E (E0I ~ E,((ss\ss), (ssx\ssx)))2 (11) 

where E0,- is the empirical value of the valence state energy, 
Ej is the corresponding energy expression from Appendix II, 
and / is summed over all known (to us) energy states with Nv 
greater than or equal to 4. The residuals, £°, - E1, at the 
minimum are reported in Table II, and the corresponding set 
of true parameters, both unique and nonunique, is reported in 
Table I for each atom. 

The function/seems to be trough shaped on the parallelo­
gram of Figure 1, with the bottom of the ditch starting near 
the point (c,b) and traversing the region in a nearly straight 
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Table II.° Least-Square Residuals after Minimizing Four- and Higher-Body Effects (See Equation 1 1) 

state 
designation 

1S 
1D 
3P 
1 po 
3 S 0 

1D0 

3po 
3 D o 

5 S o 

'S 
1D 
3P 
2po 
2P 
2S 
2D 
4P 
2po 
2 D o 
4 S 0 

1S 
lpo 
3po 
1S 
1D 
3P 
2S 
2po 

configuration 

P4 

P4 

P4 

sp3 

sp3 

sp3 

sp3 

sp3 

sp3 

s2p2 

s2p2 

s2p2 

P5 

sp4 

sp4 

sp4 

sp4 

S2P3 

s2p3 

s2p3 

P6 

sp5 

sp* 
s2p4 

s2p4 

s2p4 

sp6 

s2p5 

C 

-0 .35 
-0 .23 
-0.11 
+0.06 
+0.24 
-0 .47 

N 

-0 .03 
-0 .30 
-0 .45 
-0 .37 
-0 .09 
-0 .10 
+0.07 
+0.15 
+0.15 

-0 .74 
-0 .10 
-0 .22 
-0 .25 

O 

-0.29 
-0 .02 
-0 .07 
-0 .18 
-0.08 
-0 .23 
+0.00 
+0.08 
+0.20 
+0.14 
+0.01 
+0.06 

-0 .70 
-0 .42 
-0 .19 
+0.11 
+0.04 
-0 .18 
-0.04 

-0 .36 
-0 .44 
-0.11 
-0 .87 
-0 .75 

F 

-0 .16 
-0 .02 
-0.07 
+0.03 
-0 .09 
-0 .15 
+0.05 
+0.01 
-0 .02 
+0.26 
-0 .12 
-0 .13 

-0.44 
-0 .54 
+0.02 
-0 .19 
-0 .12 
-0 .14 
-0 .62 
-0.65 

-0.67 
-0 .63 
-0.18 
-1 .36 
-1 .40 

-2 .15 
-2 .95 

Si 

-0 .52 

-1 .46 
-2.91 
-0 .15 
+0.27 
-0 .39 
-0.45 

P 

-0.01 
+0.01 
-0 .40 
+0.80 
+ 2.10 
+0.08 
-0 .29 
+ 1.31 
+0.23 

-0 .57 
+0.96 
+ 5.79 
+4.06 
+ 1.63 
+ 3.54 
+0.45 

" Energies for A'v 
0, 1,2, 3. 

: 0, 1,2,3 which are used to determine the true parameters in Table I are exactly reproduced, i.e., (£°,- — E1) = 0 for A'v 

line of approximate slope zero. The bottom of the ditch is rel­
atively flat over long distances and has at least two local min­
ima, both of which give reasonable values for the true pa­
rameters (W Is.?) and <55J: 155X) and nearly identical values 
for/. We attach no significance to the fact that in all cases 
reported the local minimum closest to the point (c,b) proved 
to be slightly superior for minimizing/. 

It should be emphasized that this scheme is not the only way 
to fix the remaining degrees of freedom. However, it does give 
insight into the importance of the effective many-electron ef­
fects which is part of our purpose. From Table II, it can be seen 
that these effects are generally on the order of tenths of an el-
ectronvolt except for a few states. The effects are also generally 
larger for second-row atoms, indicating that the polarizability 
of the core may be one of the important factors for estimating 
the magnitude of the contributions of the many-electron true 
parameters. 

It is probably not safe to search Table Il for states with large 
errors and then conclude that effective many-electron effects 
arc most important only for these states. The reason for this 
lies in the nonuniqueness of the chosen form of f((ss|.v.?), 
(.wx|.?.?x)) in eq 11. For instance, we could have chosen to 
minimize the errors in excitation energies and ionization po­
tentials due to the omission of many-electron true parameters 
rather than errors in absolute energies. The result would have 
been to shift the errors associated with each state, thus possibly 
changing the pairing between large errors and certain 
states. 

Finally, there is the possibility that some of the experimental 
energies could be misassigned, especially for second-row atoms 
where intruder states and low-lying Rydberg states mix 
strongly with valence states. Silicon provides a good example 
in which there is a large discrepancy between certain ab initio1' 
and their corresponding unique empirical true parameters. The 
discrepancy can be traced to the sign of the energy splitting 

between the 2D°(3p3) valence state and the 2D°(3s3p3d) "in­
truder" excited state of Si+ . The ab initio second-order cal­
culation seems to be converging to the lower level which is 
empirically assigned to 2D°(3s3p3d). This type of problem is 
typical of any energy-independent (Rayleigh-Schrodinger 
type) perturbation theory when intruder states are 
present 29 

IV. Conclusions 

The effective valence shell Hamiltonian is discussed from 
an empirical standpoint, both as an ab initio electronic struc­
ture method and as the theoretical foundation of improved 
semiempirical theories. We demonstrate, within a formalism 
in which the true parameters are independent of the charge on 
the atom and also of the valence state energy, that certain of 
the true parameters must be independent of the chosen form 
of the valence orbitals in ab initio calculations. These empiri­
cally determined unique true parameters can serve as a mea­
sure of convergence for ab initio calculations of ..7/v. The re­
maining true parameters are empirically nonunique and, 
therefore, must be functions of the form of the valence orbitals 
chosen in ab initio calculations. By using the two degrees of 
freedom among the nonunique true parameters, we show that 
the total contribution from four- and higher-electron true 
parameters may be important for certain valence states, but 
is in general only on the order of a few tenths of an electronvolt 
for the atoms studied. 

In spite of the nonuniqueness associated with eq 1 1, there 
are several general trends which we believe are valid and im­
portant. First, the overall magnitude of the many-electron true 
parameters is accurately represented by the numbers in Table 
11. The fact that the errors are larger for larger N\. is reasonable 
since the weight with which the many-electron true parameters 
enter in the energy expressions increases significantly with 
increasing ;VV. Also, the errors are larger for second-row atoms 



Yeager, Sheppard, Freed / Exact Effective Valence Shell Hamiltonian 1275 

than for first-row atoms. This is probably due, in part, to the 
existence of low-lying "intruder" states which involve the 3d 
orbitals and mix strongly with valence states. In order to 
compensate for this strong mixing between P and Q space, 
large contributions are required from the many-electron true 
parameters. One solution to this problem is to include 3d or­
bitals in the valence shell; however, this remedy is not without 
its own maladies, i.e., an enlarged valence space, more com­
plicated formulas, more true parameters to evaluate, insuffi­
cient experimental data, etc. 

Another trend which is apparent from Table 1 is that, except 
for £ c , the true parameters decrease in magnitude from the 
first to the second row. This is a consequence of the fact that 
excitation energies and ionization potentials are smaller for 
second-row atoms since the (1 s22s22p6) core is softer, allowing 
for more core reorganization, and the valence electrons, being 
further from the nucleus in the second-row atoms, can be 
further from each other. In silicon and sulfur, the true pa­
rameter, (xy\yx), actually changes sign due to the inversion 
of the 1D(P2) and 3P(p2) levels in Si2 + and S 4 + . 

The ramifications of the fact that certain four-electron true 
parameters may also be uniquely determined have not been 
considered here, but will be analyzed in detail in conjunction 
with third-order ab initio calculations of W. Four-electron true 
parameters first appear in the third-order theory.28 

In relation to semiempirical theories, the one- and two-
electron semiempirical parameters have quite different values 
than the one- and two-electron true parameters.10-" This 
suggests that some averaging of effective many-electron effects 
has been incorporated in semiempirical parameters at the ex­
pense of transferability between states of the same atom in­
volving different charge and/or local electronic structure. A 
preliminary study of this averaging has already been reported 
elsewhere by Freed and Sun.23 

It should be pointed out that the high symmetry associated 
with the atomic valence space plays an important role in al­
lowing the unique determination of so many of the true pa­
rameters. For molecules, the situation is much worse since the 
number of true parameters increases much faster than the 
number of valence state energies. In CH, for example, where 
the valence orbitals are chosen to be the 2c, 3a, Ixx , Ix,,, and 
Aa molecular orbitals, only the (1 trx | 1 irx ) = (1 wy 11 x,,) true 
one-electron parameter can, in principle, be uniquely deter­
mined. The remaining six one-electron true parameters 
(<2<x|2ff), <3cr|2cr>, <3cr|3cr>, <4cr|2t7>, <4a|3ff), and 
(Aa[Aa)) are related by only three empirical equations, but 
these are not readily measured experimentally since to our 
knowledge CH 4 + is not known. The situation gets much worse 
as symmetry is reduced and the atomic numbers increase. 
Consequently, there is a great need for both theory and cal­
culations before W is completely understood in molecular 
systems. 

Finally, it should also be emphasized that the empirical 
one-center true parameters cannot necessarily be transferred 
to molecules as is customarily assumed in semiempirical the­
ories of valence. As there is unsufficient experimental data for 
molecules to rigorously test the transferability hypothesis 
empirically, this important question is to be resolved by ab 
initio calculations of W for molecular systems. The empirical 
analysis of the present paper provides an important check on 
these ab initio methods for atomic systems as a prelude to the 
molecular calculations. General theoretical considerations 
show that the true parameters are molecule dependent, and 
preliminary calculations on CH, NH, and OH do indicate the 
presence of some nonnegligible changes even in the one-center 
two-electron true parameters in going from the atom to the 
molecule. (The calculated molecular one-center one-electron 
true parameters have first-order contributions due to the field 
of the other atomic centers, making a comparison between 

atomic and molecular values difficult.) 

Acknowledgments. The authors are grateful to Mike Her­
man and Hosung Sun for many helpful discussions. This work 
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Appendix I. Energy Expressions and Relations between True 
Parameters for Nv = O, 1, 2, and 3 

E[1S] = £ c 

Nv = 0 

A'v 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

£[2P°(p)] =EC+ <x|x) 

£ [ 2 S ( s ) ] = £ c + ( s | s ) 

Av = 2 

£[ 'D(p 2 ) ] = £ c + 2 ( x | x ) + (xy\xy) + (xy\yx) 

£[3P(p2)] = Ec+ 2(x\x) + (xy\xy) - (xy\yx) 

E[1P0VSp)] = £ c + <s|s) + (x\x) 
+ (sx\sx) + (sx\xs) 

£[3P°(sp)] = £ c + (s\s) + (x\x) 

+ (.SxI-Sx) — (sx|x.s) 

£ [ 'S (p 2 ) ] j+ = 

E[ 1 S(S 2 ) ] ] -

£ c + (s\s) + ( x | x ) + V2(ss|ss) + V2(x.v|xx) 
+ (xx\yy) ±[((s\s) - ( x | x ) + V2(ss|.s.s) 
- V2(xx|xx) - (xx\yy))2 + 3 H x X ) 2 ] 1 / 2 (1.8) 

(xy\xy) + <xj'|j'x) = (xx |xx) - (xx\yy) (1.9) 

A'v = 3 

£[2D0(p3)] = Ec + 3<x|x) + 3(.XTlXj') 
+ (xyz\xyz) + (xyz\xzy) (1.10) 

£[4S°(p3)] = Ec + 3<x|x) + 3(xy|x><> 
- 3(x>'|j'x) + (xyz\xyz) - 2(xyz\xzy) (1.11) 

£[2P(sp2)] = E c + (s\s) + 2 ( x | x ) + 2(sx\sx) 

+ (sx\xs) + (Xj'Ix>'} - (xj ' | j 'x) + (sxy\sxy) 

- (sxv|svx) + 2{sxy\xsy) (1.12) 

E[2S(Sp2)] = £ c + (.s|s) + 2 ( x | x ) 

+ 2(sx|sx) - (sx|xs) -I- (xx |xx) + 2 ( X X | J T ) 

+ (sxx|sxx) -I- 2{sxx\syy) (1.13) 

£[2D(sp2)] = £ c + <s|s) + 2(x|x> 
+ 2(.sx|sx) — (sx |xs) + (xj'|xj») + (xj'lj'x) 

+ (sxj'|.?xj'} + (sxy\syx) (1.14) 

£[4P(sp2)] = £ c + (s | s ) + 2 ( x | x ) 

+ 2(sx\sx) — 2 (.vx I x.s) + (xj'I xj') — (xj'lj'x) 
+ (.SXV |.v xj') — (sxy\xsy) — (sxy\syx) (1.15) 

E[2P°(p3)] ]+ = 

£[2P°(s2P)]J-
E c + (s|.s) + 2(x\x) + Y2(.ss|.s.s) + (sx\sx) 

- V2(.sx|x.s) +V2(XX I xx> + (xj'I xj') 
- xh.(xy\yx) + V2(xxIvjO + V2(.s.sx|.s.sx) 
+ V2(xvvIXjT) + V2UJT\xzz) ± [((.s|.s) 

- ( x | x ) + V2(S-SIss> + (sx|.sx) - V2(sx|xs> 
- V2(.YX|XX) - (xj' |xj ') + V2(AT|J'X> 

- V2(xxIJT) + V2(SSX|.ssx) - V2(XJTI-X-JT) 

- V2(-XTT|xzz))2+2((ss|xx) 
+ (XJT I XSS))2Y'2 (1-16) 
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(xyz\xyz) + (xyz\xzy) 

= (xyy\xyy) - {xyy\xzz) (1.17) 

(sxy|sxy) + (sxy\syx) 

= (sxx\sxx) — (sxx|syy) (1.18) 

Appendix H. Energy Expressions for JV, = 4, 5, 6, 7 
Omitting Four- and Higher-Electron True Parameters 

/Vv = 4 

£[ 'P°(sp3)] = Ec+ (s\s) + 3 ( x | x ) + 3 (sx | sx ) 
+ 3(xyIxy) + 2{xx\yy) + 2 (sxy\ sxy> 

— (sxy | syx) + 3 (sxy | xsy) + (sxx | SAX ) 
+ (xyy\xyy) + (xyy |xzz) + <sxx \ syy> (11.1) 

£[3S°(sp3)] = £ c + ( s | s ) + 3(x\x) + 3 ( sx | sx ) 

+ {sx\xs) + 3(xy\xy) — 3(xy |yx) + 3(sxy|sxy) 
— 3(sxyI syx) + 5 (sxy |xsy) + (xyz\xyz) 

-l(xyz\xzy) (II.2) 

£[ 'D°(sp3)] = £ c + (s\s) + 3(x\x) + 3 ( sx | sx ) 
+ 3 (xy |xy) + 3 (sxy | sxy) + 3 (sxy \ xsy) 

+ (xyy\xyy) - (xyy\xzz) (II.3) 

£[3P°(sp3)] = Ec+ (s\s) + 3(x\x) + 3{sx\sx) 
— 2{sx\xs) + 2(xy\xy) — (xy\yx) + (xx\xx) 

+ (xx |yy) + (sxx\sxx) + 2(sxy\sxy) — (sxy\syx) 
— (sxy I xsy) + (xyy\xyy) + (sxx\syy) 

+ (xyy\xzz) (WA) 

£[3D°(sp3)] = Ec + (s\s) + 3(x\x) + 3(sx\sx) 

- 2(sx\xs) + 3(xy\xy) + 3(sxy\sxy) 

- < .«:>'I xsy > + (xyy \ xyy) - (xyy\xzz) (11.5) 

£'[5S°(sp3)] = Ec + (s\s) + 3(x\x) + 3{.vx|.vx) 
- 3(sx\xs) + 3<x>'|x.y> - 3(xy\yx) 

+ 3(sxy\sxy) — 3 (sxy \ syx) — 3(sxy\xsy) 

+ (xyz\xyz) - 2(xyz\xzy) (11.6) 

£'['S(p4)] ]+ = 

C[1S(S2P2)] -

Ec + (s\s) + 3 ( x | x ) + '/2<.«|.w) + 2(.vx|.sx) 
— (.vx|x.v> + 3/2(xx|xx) + 2<x_y|x>'> — (x>'|>'x) 

+ 2(xx|>'>') + (ssx I ssx > + (.vxx|.sxx> 
+ 2(.vxx|.?y.y) + 2(x>>_y|x>'>'> + 2(xyy\xzz) 
± \{(s\s) - (x|x> + V2(ss\ss) + 2(sx\sx) 

— (.vx|x.s> - [l2(xx\xx) - 2(x>-|x>'> + <x>'|.yx} 
+ <.wx|.s.vx> + (.sxx |.sxx) + 2 {,sxx I syy) — 2 (xyy | xyy) 
- 2{x>';'|x2z))2 + 4 ( ( « | x x ) + 2(xyy\xss))2]]/2 (II.7) 

f [ 'D(p 4 ) ] ]+ = 

E[1D(S2P2)] -

Ec+ (s\s) + 3(x\x) + !/2(.«|.s.s) + 2(.sx|.sx> 
— <sx|x.s) + '/2 < xx I xx) + 3(xy\xy) + (.s.sx|.s.sx) 

+ <.sxi'|.sxr> + {.sxj |.syx) + (xyy |.xyy) + (xyz\xyz) 

+ (xyz\xzy) ± [(<.s|.s> - ( x | x ) + '/2<.«'!•«> 
+ 2(.sx|.sx) — (.sx|x.s) — '/2 (-vx I xx) — 2(x_y|x,y) 
+ (xy \yx) + (.s.sx|.s.sx) + (sxy\sxy) + (sxy \ syx) 

- (xyy\xyy) - (xyz\xyz) - (x rz |xz j ' ) ) 2 

+ (<.s.s|xx) + 2(x>')'|x.s.s))2]'/2 (H.8) 

£[3P(P4)] + = 

E[3P(S2P2)]]-

£ c + (s\s) + 3(x\x) + ^j2(ss\ss) + 2(.sx|.sx> 
— (sx|x-s) + ' /2<*JC|XX) + 3(x>'|x>') — 2(x>'|>'x) 

+ (5.sx|.s5x) + (sxy\sxy) — (sxy\syx) 
+ (xyy\xyy) + (xyz\xyz) 

- (xyz\xzy) ± [((s\s) - ( x | x ) + V 2 ( ^ I W ) 

+ 2 (.sx I sx) - (sx\ xs) - '/2 (-vx I xx) - 2 (xy \ xy) 
+ (xy\yx) + (.s.sxj.s.sx) + (sxy\sxy) — (sxy \ syx) 

- (xyy\xyy) - (xyz\xyz) + (x>'z|xz)-))2 

+ ((.s.s|xx> + 2<x>'>'|x.s.s))2]'/2 ( n 9 ) 

A'v = 5 

E[2P(Sp4)] = Ec+ (s\s) + 4 ( x | x ) + 4(.sx|.sx) 

+ (xx |xx) + 5 (xy I xy) — 3{x>'|>'x) + (.sxx|.sxx) 
+ 5(sxy\sxy) — 3 (sxy \syx) + 6(.SXj1Ix-Sj1) 

+ 2 (xyy I xyy) + 2 (xyz | xyz) - 2 (xyz \ xzy) (11.10) 

E[2S(Sp4)] = EQ+ (s\s) + 4 ( x | x ) + 4(sx\sx) 

- 2(.vx|x,s) + 2 (xx I .vx) + 4 (xy \ xy) - 2(xy\yx) 

+ 2(xx|>'j') + 2 (.vxx |.sxx) + 4 (.sxj'15xj') 
— 2 (sx>-1.syx) + 2 (sxx I syy) + 4 (xjy | xyy) 

+ 4 (xyy I xzz) (11.11) 

E[2D(Sp4)] = Ec+ (s\s) + 4 ( x | x ) + 4(.sx|sx) 
- 2 ( sx |xs ) + (xx |xx) + 5(xy |xy) - (xy| j 'x) 

+ (sxx I sxx) + 5 (sxy I sxy) — (sxy|sj 'x) 
+ 2 (xyy I xyy) + 2 (xyz | xyz) + 2 (xyz | xzy) (11.12) 

E[4P(Sp4)] = Ec+ (s\s) + 4 ( x | x ) + 4 ( sx | sx ) 
- 3 (sx I xs) + (xx |xx) + 5(xy |xy) - 3(xy | j 'x) 

+ (sxx I sxx) + 5 (sxy I sxy) — 3(sx j ' | syx) 

- 3 (sxj'|.Y.vj') + 2 (xyy\xyy) + 2(xj'z|xj'z) 
- 2 ( x y z | x z y ) (11.13) 

E[2D°(s2p3)] = £ c + 2 ( s | s ) + 3 ( x | x ) + (s.s|.ss) 
+ 6 (sx I sx) - 3 (sx I xs) + 3 (xy IXV) + 3 (ssx | ssx) 

+ 6 (sxy I .sxj') - (xyy \xzz) + (xyy \ xyy) (11.14) 

£[4S°(s2p3)] = Ec + 2(s].s) + 3 ( x | x ) + <.ss|ss) 
+ 6<sx|sx) - 3(S.Y|XS) + 3(xy |xy) - 3(xy | j 'x) 

+ 3 (ssx \,ssx) + 6 (sxy I sxy) - 6 (sxy \ syx) 

+ (x vz I x vz)-2( xyz I xzy) (11.15) 
£[2P°(P5)] ]+ = 

E[ 2 P°(s 2 p 3 ) ] j -

EQ+ (s\s) + 4(x |x> + '/2(SSlSs) + 3(sx | sx) 
- 3/2(.sx|xs) + 3Z2(X-V I xx) + 5(xy |xy) - ^(.vjij ' .v) 

+ V2(xx|j'y) + 3I2(SSx I ssx) + 2 (sxy I sxy) 
- (sxy|sj 'x) + (sxx|.sxx) + (.sxx|sjy) + 7/2(-vjj'|xj'j') 
+ V2(xj'y|xzz) 4- 2 ( A T Z | A T Z ) - (xj'z|xzy) ± [ ( (s | s ) 

- ( x | x ) + V2 (ss I ss) + 3 < sx |.sx) - % (sx I xs) 

- V2(XX I xx) - 3(xy |xy) + 3/2<xy|j'x> + V2 <-vx | j y ) 
+ 3/2(ssx|ssx) + 2(sxy|.sxy) - (sxy|.sj'x) + (sxx|.sxx) 

+ (sxx I syy) - 5/2(xyy|xyy) + V2 (xyy | xzz) 
- 2 ( xyz | xyz ) + ( x y z | x z y ) ) 2 + 2 ( ( ss | xx ) 

+ 3(xyy|x.ss))2 ] ' /2 (11.16) 

A'v = 6 
£['P°(sp5)] = E c + (s | s ) + 5 ( x | x ) + 5(sx | sx) 

- (sx |xs) + 8(xj'|xy> - 4<xy|yx) + 2 (xx |xx ) 
+ 2 (sxx I sxx) + 8 (sxy | sxy) - 4 (sxj' | syx) 
+ 6 (sxy I xsy) + 6(xyy|xvy) + 4(xj 'z |xyz) 

-2 (x j ' z (xzy> (11.17) 
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£[3P°(sp5)] = Ec+ (s\s) + 5<x|x> + 5(sx\sx) 
- 3(sx\xs) + %{xy\xy) - 4(xy\yx) + 2{xx\xx) 

+ 2 (5XX I 5A-X > + 8(5X>'|5X>>> - 4(5X>'|.S>'X) 

- 2(5xv|x5v) + 6(xyy\xyy) + 4(xyz\xyz) 
-2(xyz\xzy) (11.18) 

E[1D(S2P4)] = Ec + 2(5|5) + 4(X|X) + (55|55> 
+ 8(5x|5x) — 4(5x|x5> + (xx |xx ) + 5(x>'|x>') 

— (xy\yx) + 4(55x|55x) + 2(sxx\sxx) 

+ 10(5x>'|5x>'> — 2{sxy\syx) + 2{xyy\xyy) 
+ 2(xyz\xyz) + 2(xyz\xzy) (11.19) 

£[3P(S
2P4)] = Ec + 2(S\S) + 4{x\X) + <55|55> 

+ 8(5X|5X) - 4<5X|X5> + ( x x | x x ) + 5 ( x y | x . y ) 

- 3(x>' |} 'x) + 4<55X|55X> + 2 (5XX | SXX ) 

+ 10(5xr|5x>>> - 6<5X>'|5>'x> + 2(xyy\xyy) 

+ 2{xyz\xyz) - 2(xyz\xzy) (11.20) 

£[ 'S(p 6 ) ] j + = 

£ [ ' S ( s V ) ] ] -

Ec+ (s\s) + 5(x\x) + V2(."|55> + 4<5x|5x) 
- 2(5x|x5> + % (XX I xx) + 8(x>'|x>>) - 4(x>'|>'x) 

+ ( XX |>'>'> + 2<55X|55X) + 2 ( SXX \ SXX ) + 4 ( 5X}> | 5X>' ) 
- 2(5x>-|5>'x) + 2<5xx|5>'>') + %(xyy\xyy) 

+ 2{xyy\xzz) + 4{xyz\xyz) - 2{xyz\xzy) ± [(<s|s> 
- ( x | x > + '/2<55|55) + 4<5X|5X> - 2 (5x |x5> 

- '/2(xx|xx> - 4(x>'|x>') + 2(x>'|>'x> + (xxI>».}>) 
+ 2<55x|55x) 4- 2(5xx|5xx) + 4{sxy\sxy) 
- 2(5X>'|5>'x) + 2(sxx\syy) - 4{xyy\xyy) 

+ 2 ( x » ' | x z z ) - 4(xyz\xyz) + 2(xyz\xzy))2 

+ 3((ss|xx> + 4(x>->'|x55>)2]l/2 (11.21) 

Nx = 1 

£[2S(sp6)] = Ec+ (s\s) + 6(x\x) + 6<5x|5x> 
— 3(5x|x.?) + 3 (xx |xx ) + 12(x;'|x>') — 6(x>'|j 'x) 

+ 3 (5XX I SXX ) + 12(5X>'|SX>') — 6(5X>'|5>'X) 
+ 12(xj'v|x>'j') + 8(x>'z|x>'z> — 4(xyz\xzy) (11.22) 

£[ 2 P°(S 2 P 5 ) ] = £ c + 2 < 5 | 5 ) + 5 ( X | X ) + <55|55> 

+ 10 (sx I sx) — 5 (5XI xs) + 2 (xx I xx) + 8 (xy \ xy > 
— 4(x>'|>'x) + 5(55x|s5x) + 4(sxx|sxx) 

+ 16(5x;'|5x.v) — 8(5xy|5>'x) + 6 (xyy \ xyy) 

+ 4{xyz\xyz) - 2{xyz\xzy) (11.23) 
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